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Abstract—A finite strain constitutive theory for a special class of isotropic, rate independent, elastic—plastic
materials is proposed. The development proceeds from the assumed existence of a free energy function and
the requirement that the postulate of Il'iushin be satisfied for all processes. A precise formulation of the
hypothesis of invariance of elastic properties under continued plastic flow, however, leads to an important
identity which restricts the class of admissible energy functions and allows for a useful restatement of the
known stability requirements. In particular, it is established that a yield function that depends only on the
invariants of Kirchhoff stress must necessarily conform to an explicit convexity requirement and act as a
potential, in the classical sense, for the plastic strain increments. With this, a complete analogy with the
classical small strain development of rate independent clasto-plasticity is established.

INTRODUCTION

Recent considerations in the development of elasto—plastic constitutive theory include attempts
to accomodate large deformation through the introduction of finite strain measures and to find
some rational justification for the commonly used plastic rate equations. Citing the fundamental
paper by Green and Naghdi[l] it is noteworthy that an acceptable structure for the con-
sideration of finite strains has existed only since 1965 while the latter issue is as yet unresolved.
Regarding the latter, the initial contribution was made by Drucker[2] in 1951 when he set forth
his postulate on plastic stability. But, despite the fact that it seemed to provide a concise and
plausible justification for plastic potential theory for the case of infinitesimal strains, its
usefulness could not be extended into the finite strain regime. As a result, the need for similar
but more generally useful constitutive inequalities, subsidiary to those obtained from standard
thermodynamic considerations, was recognized.t

In this regard, considerable effort has been expended in analyzing the implications of the
more recent postulate of Il'iushin[4]. This postulate differs from that of Drucker in that it is
based on the idea of a closed isothermal strain cycle (rather than a loading cycle) and states
simply that the total work done during such a strain cycle should be non-negative, zero if and
only if the cycle is completely elastic.

In the present paper the general constitutive structure of Green and Naghdi and the
requirement that the postulate of II'iushin be satisfied for all processes are taken as the starting
point for reformulating the specialized finite strain elastic-plastic constitutive theory proposed
by Lee[5]. This theory, proposed for the purpose of describing ductile metals during explosive
forming processes, is based on the standard model which motivated the classical isotropic
work-hardening theory of Hill[6}. Specifically, the ideal material is characterized by the
existence of a free energy or elastic strain energy function, the invariance of elastic properties
under continued plastic flow, and the incompressibility of the non-recoverable deformation. The
latter assumptions make it possible, in essence, to regard plastic flow as a continual updating of .
the elastic reference configuration. The standard type of yield criteria formulated in terms of an
isotropic yield function of the independent state variables is also assumed.

The present formulation differs fundamentally from that of Lee. Most apparent is the
reformulation of the kinematics in terms of symmetric positive definite deformation tensors
rather than deformation gradients. The initial advantage of this approach is that, by formulating
the theory in terms of frame indifferent strain measures, the detailed frame indifference
considerations in the original work are made unnecessary. More importantly, by taking the
metric tensors associated with an originally orthonormal triad of material elements in the

tA number of these proposed inequalities are critically reviewed by Hill[3).
519



520 P. A. DASHNER

current and unstressed configurations as the primitive measures of deformation one need not
suppose, even locally, the existence of an invertible point transformation defining the un-
stressed configuration. The existence of such a map would of course predetermine the flatness
of the unstressed manifold and thus preclude the existence of local residual stresses. Also,
stability requirements such as that of II'iushin, were not considered in the original work and, as
a consequence, the plastic-rate equations were advanced merely as constitutive hypothesis.

The present approach also differs from that of Dafalias[7] in which the restrictions imposed
by the II'iushin postulate on a more general class of elastic-plastic materials are considered.
Although Dafalias specifically considers the case for which “the elastic properties are not
coupled with plastic deformation™ his mathematical formulation of this invariance is, ap-
parently, oversimplified. Here, it is demonstrated that the invariance of elastic properties, in the
sense intended by Lee, in fact necessitates, in a Lagrangian energy formulation, a type of
“geometric” coupling of elastic and plastic strain tensors quite different from that considered
by Dafalias.

The specific requirement that elastic strain energy depend only on the elastic part of the
distortion is easily formulated in terms of the invariance of strain energy under arbitrary
transformations of the reference configuration. This is seen to require that an allowable energy
density be a “coordinate invariant” function of its tensor arguments. An important identity
satisfied by such functions then provides the impetus for the completion of the theory. In
particular, it is demonstrated that a generalized form of plastic potential theory follows from
what is essentially the classical yield criteria.

1. KINEMATICS
The continuing flow or deformation of an ideal isotropic elastic-plastic material from some

zero stress reference configuration is described by a smooth one-parameter group of non-
singular point transformations

x; = xi(t, X;). (1.1)

In (1.1) and throughout, the upper and lower case kernel x is used to identify the rectangular
Cartesian coordinates of a material particle in the reference and current configurations
respectively. In terms of the non-singular deformation gradient

zix_i.

=X, (1.2)

Xij

it is easily seen that material differentials originally proportional to the basis vectors (e;, e, e3)
deform continuously into their current configuration (g, g, g) according to the rule

8 = Xji€; (1.3)

The geometry, irrespective of orientation, of the deformed elements is then determined by the
standard Green deformation tensor

Ci=gi" 8 = XiiXup (1.4)

It is further supposed that the triad of material elements would recover a third configuration
(), 1, f;) with geometry

C=t; -1 (1.5

upon step removal of stress at that point. The positive definite, symmetric deformation tensor
C¥% is then said to determine, pointwise, the geometry of the so called “‘unstressed” configura-
tion. In terms of the total and plastic deformation tensors (1.4, 5) the total, plastic and elastic
finite strain tensors are then defined as
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ZE;I = Cy - 8;)
2E§=Ch- 8y (1.6)
2E5=C;-C}.

After recording the obvious additive property
E;=E}+Ej (1.7

their physical significance as they relate the respective lengths dso, ds, and ds of a material
element dX; in the reference, unstressed and current configurations through the quadradic
forms

ds?-dse? = 2E; dX, dX,
ds,2—ds¢? = 2E8 dX; dX; (18)
ds?—ds,? = 2E5 dX; dX,

is easily verified.

Observe also that it is only necessary to require that the total strain tensor be a compatible
strain tensor, i.e. that the Riemann curvature tensor corresponding to C;; vanish pointwise. In
general the curvature tensor associated with C¥% need not vanish and this would in fact provide
a test for the existence of local residual stresses.

The sets of directors {e;}, {f;} and {g;} also yield to an interpretation relevant to dislocation or
slip analysis. In particular, the set of vectors

m; = (g f)e; i=1,23 (1.9)

can be shown to be proportional to the lattice cell edges in the current configuration which,
when fully relaxed and stress free, are proportional to the reference traid {e;}. Consequently,
when the relaxed and reference traids {f;} and {e;} correspond it is seen that

m; =g (1.10)

and hence the crystal deformation is identical to the observed local deformation. In other
words, no slip or dislocation has occurred. Thus, the extent to which the relaxed triad {f;}
differs from the reference triad {e;} may be regarded as a measure of the importance of slip
plane activation, relative to pure crystal distortion, in the observed deformation. Clearly, this is
reflected in the plastic strain tensor.

The incompressibility of plastic flow is also fundamental to this theory. Thus it is required
that the respective volumes of a material element in the unstressed and reference configurations
be identical. The fact that this restriction requires that

C? =det(CH=1 (1.11)
is a standard result from geometry. The differential form of this restriction,
BSE§=0, Bi=(CiI™", (1.12)

is obtained by differentiating (1.11) and citing Cramer’s rule.

2. CONSTITUTIVE MODEL
The constitutive structure for this theory is fundamentally that of isotropic thermoelasticity
with the added complication of a continuously deforming elastic reference configuration. As a
consequence of the assumption that this updating of the isotropic elastic reference is the only
effect of plastic flow on elastic response, constitutive equations of the form
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¥ = $(E,E°, 0, Vx8)

s = $(E, E%, 6,Vx0) @1
T; = Ty(E, E°, 6, Vx6) '
Q: = Q:(E,E?, 6,9x9),

in which 6 and Vx@ represent absolute temperature and referential temperature gradient
respectively, are assumed for the specific free energy per unit mass ¢, specific entropy s, symmetric
Piola-Kirchoff stress T;;, and the referential heat flux vector Q;.

The familiar concept of yield is incorporated by assuming the existence of a yield function
of the form

F = F(E;, 6, E§, ,), 2.2)

in which , represents some scalar hardening parameter reflecting plastic deformation history.
Introducing the shorthand

G = (Eiv 0), H = (Eﬂ’ wp)’ (2'3)
this yield function determines the interface between purely elastic response, characterized by
H = (E%, &) =0, (2.4)

and non-elastic response, according to the following rule: the deformation proceeds elastically
whenever

F<0 (2.5)
or
aF
F=0 and EG <9, (2.6)t

while the deformation proceeds non-elastically with

dF .  dF .

F=EG+ﬁI—H=0 Q2.7
whenever
F=0 and %G =0. (2.8)

Note that, as a consequence of (2.7), the inequality F <0 is always satisfied, so that the current
value of total strain always lies within or on the projection of the yield surface F =0 in strain
space. For this reason it is generally possible to assign a program of purely elastic deformation
through any attainable strain state. For those states on the yield surface itself such paths are
said to characterize *“‘unloading™ processes and have inward pointing tangent vectors at the
point of initiation.

It should also be noted that, whereas the exclusion of w, as an argument of the constitutive
equations (2.1) is physically justified for this material model, the exclusion of temperature
gradient as an argument of the yield function is not. Hence, the principle of equipresence is
formally violated. However, just as in simple thermoelasticity, it will be seen that only the heat
flux equation of those listed in (2.1) can contain explicit dependence on V6. Consequently, it
appears that a sufficient justification for this exclusion may be based on an additional physical
assumption concerning the insensitivity of yield to heat flux.

1The correspondence: (3F13G)G = (3F13E;)E; + (3F130)8, is intended.
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The formal constitutive structure is now completed by assuming that the plastic variables H
evolve according to rate laws of the form

E%=Ry(G,H,G)) ,
i= Rl .)}H=R(G,H,G), 29)
&= G, H, G)

and that total strain and absolute temperature can be varied arbitrarily and independently. For
definiteness, the constitutive equations (2.1) and the yield function (2.2) are assumed to be
continuously differentiable while only piecewise continuity is required of the rate equations
(2.9).

The restrictions imposed by the second law of thermodynamics on a constitutive theory of
this general type have been considered by Green and Naghdi and Dafalias in the previously
cited references. In particular, if the Clausius-Duhem inequality is to be satisfied for all
conceivable processes, it is necessary and sufficient to require that free energy be independent
of the temperature gradient,

N
30, " 0, (2.10)
that the relationships
s=-3¢
; .11
Ty= Po“%

hold between the constitutive expressions (2.1), and that the Planck inequality,

- W%Eg = T§E} =0, @.12)

hold for internal dissipation as well as the Fourier inéquality,
Qb <0, (2.13)
for heat flux.

Implicit in (2.12) is the definition for the “thermodynamic tension™ T§ which in classical small
strain theory, where

Ef] = E;] - Ef]
and .
¥ = §(E}), 2.14)
takes the simple form
a4 2
Tg):_pog%:poﬁ'&:m .15

At this point the definition of the scalar hardening parameter w,, the counterpart of Lee's
“plastic work”, is made explicit by equating its rate of change to the non-negative internal
dissipation, i.e.

wp, = THER =0. (2.16)
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It is easily confirmed that w, represents the density for internal entropy production per unit
temperature in the absence of temperature gradient or the rate of energy dissipation during
plastic flow in the purely mechanical theory.

3. INDEPENDENCE OF ELASTIC PROPERTIES

The independence of elastic properties on plastic strain history is not fully guaranteed by
requiring free energy functions to be of the form

¥ =W(E, 0, E"). 3.1)
A more critical restriction on the class of admissible energy functions results from the
requirement that the free energy stored in the body depend only on the elastic distortion, i.e.

the change in local geometry between the current and unstressed configurations. This is
formulated mathematically by requiring the invariance of free energy,

V=1 poydVy, (3.2)
Vo

under an arbitrary change of reference configuration.

In order to assess the implications of this requirement it is convenient to express specific
free energy as an explicit function of the deformation tensors (1.4,5) through the cor-
respondence

1 1
wC.en=uf3c-n.je-n) (33)

This is done in order to exploit the fact that the deformation tensors transform according to the
covariant rule,

C_‘il' - X:I:IXI_.I:CMII

- (3.4
Ch= XimXinChuns
under an arbitrary transformation of reference configuration,
Xi = x(X))
Xii = (9xd3X;) (3.5)
J =det (XU) > 0,

while the total and plastic strain tensors do not. With this notation, the formal statement of
invariance is as follows: the free energy integral (3.2) is locally invariant under arbitrary
transformations of reference configuration (3.5) in the sense that

¥= f pot(C, C°)dV, = f 5W(C, C?) dV, 3.6)
Vo Vo

where the deformation tensors are related through the transformation equations (3.4) and the
transformed reference mass density is given by

po=J"po. (3.7)

By carrying out the simple change of variables

f_ pop(C, C*Yd Vo= j poW(C, C?)J dV,
Vo A

=mecémw, (3.8)
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it is clear that (3.6) will hold for arbitrary material subdomains if and only if the identity

wC.CP=¥(C, C" (3.9)

holds pointwise for arbitrary non-singular transformations. In other words, if the free energy is
to depend solely on the elastic distortion it is necessary to require that the energy density ¢ be
a “coordinate invariant” function of its tensor arguments. With the selection of an arbitrary
one-parameter group of non-singular transformations (3.5) it is a straightforward exercise to
show that

A = w0 o
deMC’C ]| [ 3, C“+a zx Cf,]x.. _Lax . (3.10)

where ¢ represents the group generator and use has been made of the symmetry of the
deformation tensors. As a consequence, it is observed that the coordinate invariance property
(3.9) will hold if and only if the identity

KL

3Cy 0 3.11n

Gt g

is satisfied for all values of the symmetric arguments.
From (3.3) and (1.6) it is also clear that (3.11) is equivalent to the identity

K2

i 2oy, G.12)

dE%
which may be written as
T&C&j ~-T&C f; =

in terms of the symmetric Piola-Kirchhoff stress tensor and the thermodynamic tension
introduced in (2.12). Multiplication of (3.12) on the right with the inverse plastic deformation
tensor, B = [C§]™", then results in the following useful expression:

T§ = TinConB%;. (3.13)
With this, the Planck inequality (2.12) takes the alternate form

o, =2;Df=0, (3.14)
in terms of new non-symmetric stress and plastic strain rate measures defined by

3, =TuCy; Di=BSLES;. (3.15)

Note in particular that since Cy and Bf in fact correspond to the covariant and con-
travariant metric tensors associated with the Lagrangian coordinate net in the current and
unstressed configurations respectively, X, and Dj clearly represent the mixed components of
true stress and the rate of plastic deformation tensors relative to the appropriate distorted basis.

It is important to note also that the identity (3.12) implies a non-trivial coupling of the total
and plastic strain tensors in the argument of a properly invariant energy function. In particular,
observe that an energy function of the simple form

¢ =§(E) = §(E- P) (3.16)
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is not properly invariant since, for this type of dependence,
T,*Ck, - T&C{l = 2TmEi, (317)

Clearly this may be taken as invariant only to the extent that elastic strains are small.

A particularly simple method for constructing invariant energy functions is to replace the
total strain with elastic strain and the Kronecker delta with the inverse plastic deformation
tensor in any isotropic elastic energy function. For instance, the quadradic energy function

- 1
dl = E(A&,&m + 2#5‘,“8;,.)E‘]EM, (3 18)

becomes invariant with respect to specification of reference by rewriting it in the form

-

b= %(ABS’,B,’;.,. +2uB4, BY)ESE L. (3.19)

The identity (3.12) may also be used to restate the restrictions imposed by the stability
postulate of II'iushin which have been investigated by Hill and Rice{8] and, more recently, by
Dafalias(7). In summary, it is shown that a necessary condition for the non-negativity of
external work in a closed isothermal strain cycle is that the inequality

SERlH(E" B~ B, EPIE 20 (3.20)

hold for all strains E% on the current projection of the yield surface in strain space, all possible
plastic strain rates Eﬁ at that point, and all other strain states Ej; attainable through a program
of purely elastic deformation. By making use of (2.12),, (3.12),, and the defining expressions in
(3.15), this inequality may be written in the alternate form

[Tu(E%, E*)C} - Ta(E', E*)CLABLES) = [} -3))D§=0, (3.21)

which is formally identical to that obtained from the Drucker postulate in the small strain
development. Notice also that if the elastic region contains X, = 0 then, for this choice of 3,
(3.21) reduces the condition of non-negativity of plastic working as required by the second law
of thermodynamics.

4. SPECIALIZED YIELD CRITERIA

In view of the stability inequality (3.21) and the analogous developments in small strain
theory it is natural to consider an isotropic yield function (2.5) of the specific form

F(G, H) = f(Z, 0) - c(wp). @1

For such a yield function the postulate of I'iushin is seen to require that the projected yield
surface,

2, 0) = c(w,), 4.2)

bound a convex neighborhood of X-stress space and that the plastic strain rates project along
the outward normal to this yield surface, in the sense that

Dj= 73‘;{—” (y=20), 43)

whenever yielding occurs. By imposing the additional requirements (3.14) and (1.12) resulting
from the second law of thermodynamics and the incompressibility of plastic flow, it is further
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deduced that the elastic region must contain the origin and, through the expression

BEY = Dh = Yoy 5= 31 7=, 44

be independent of the isotropic part of X-stress. Moreover, the hardening condition (2.7) allows
for the explicit determination of the scalar multiplier v, i.e.

e

(otherwise),

4.5)

which is consistently non-negative provided that the work-hardening function ¢ is monotonic-
ally increasing. Observe that although (4.3) and (4.5) are formally deduced only for isothermal
processes their validity may be extended by hypothesis into the non-isothermal regime without
modification. Also note that since

2y = TuCy = XimXnfTmns (4.6)
where

i = (polp)os 4.7)

represents the Kirchhoff stress tensor proportional to Cauchy stress, the invarients of the
3-stress deviator are identical to those of the stress deviator 7, i.e.

=7y =335
I d 4.8)
I = ThmThnTik = Zim Srmn Soke

Consequently, an isotropic yield function of the form (4.1) differs from a classical yield function
only in its dependence on the invariants of Kirchhoff rather than Cauchy stress—a difference
which manifests itself exclusively in the presence of elastic dilitation. As a result, it may be
easily confirmed that the yield criteria and flow rule based on (4.1) are also insensitive to the
specification of reference configuration in the sense that the current evolution of the elastic
reference is independent of the level of plastic strain. Thus, it is seen that this theory is
sensitive to plastic strain history only through the dependence of the yield and flow rules on
accumulated plastic work.
One final point of consistency, since the flow rule (4.3) may be rewritten as

= 1Ch “9)

it must necessarily follow that

& —-L 4.10)

Ch—< 3

02,

This may be confirmed in light of the fundamental identity (3.12) and the specific dependence of
f on the stress invariants.

5. CONCLUSION

The essential feature of this theory is the fact that the current state is completely
determined by the absolute temperature, accumulated plastic work and the instantaneous elastic
distortion. Dependence on the plastic distortion is eliminated, as required in the theory
proposed by Lee, by demanding the invariance of constitutive equations under transformations
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of reference. This imposes an important restriction on the class of admissible free energy
functions. A restatement of a restriction imposed by the Il'iushin stability postulate then leads
to a generalized form of plastic potential theory for a specific class of yield functions precisely
as in the classical development. This completes the formulation of a simple, II’iushin stable,
finite strain, elastic-plastic constitutive theory incorporating all of the qualitative features of the
model proposed by Lee. Implementation of this theory depends only on specification of a
coordinate invariant free energy function ¢, a yield function f depending on the absolute
temperature and the invariants of the Kirchhoff stress deviator, and a monotone increasing
work-hardening function c.
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